

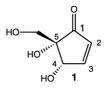
Tetrahedron Letters 41 (2000) 4291-4293

TETRAHEDRON LETTERS

The polyhydroxy cyclopentene, a total synthesis of (–)-pentenomycin

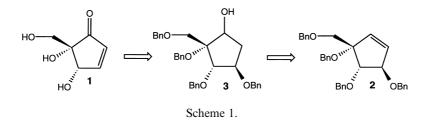
Mohindra Seepersaud and Yousef Al-Abed*

The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA

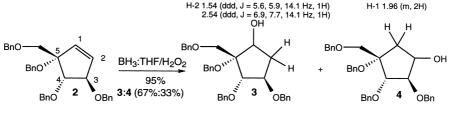

Received 23 February 2000; revised 24 March 2000; accepted 28 March 2000

Abstract

The functionalized cyclopentene 2 was converted in five steps to (–)-pentenomycin 1. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

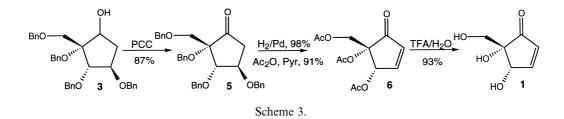

Keywords: cyclopentenes; cyclopentenones; cyclization; antibiotics.

The pentenomycin antibiotics have attracted considerable attention due to its wide range of structural and stereochemical features and biological activities.^{1a} Pentenomycin **1** was isolated by Umino and co-workers in 1973 from the culture broths of *Streptomyces eurythermus*,^{1b,c} while epipentenomycin the C-4 diastereomer, was isolated from carpophores of *Perziza* sp.² There have been several approaches³ to synthesize these antibiotics and their derivatives however, an expeditious and efficient approach is still needed.



In connection, we recently reported the synthesis of a polyhydroxylated cyclopentene 2,⁴ a useful template that can be widely utilized in synthesis of highly functionalized five-membered rings. The synthesis of 2 was done via a ring closing metathesis (RCM) in five steps with a 90% yield. A comparison of cyclopentene 2 with pentenomycin 1 indicates that the stereochemistry around the C-4 and C-5 are identical. Therefore, logical retrosynthetic analysis suggests that our key cyclopentene intermediate 2 can be converted to pentenomycin 1, via elaboration of precursor 3 (Scheme 1).

^{*} Corresponding author. E-mail: yal-abed@picower.edu


Thus, compound **2** was treated with BH_3 :THF to give the two regioisomeric alcohols **3** and **4** (2:1) (Scheme 2). The use of BH_3 :SMe₂ gave no additional selectivity while catecholborane and 9-borobicyclo[3.3.1]nonane gave no reaction.⁵ The structural identification of these regioisomers **3** and **4** were based on the coupling constants of the new methylene protons at C-2 and C-1, respectively (Scheme 2).

Scheme 2.

Compound **3** was oxidized by PCC to afford the corresponding ketone **5** (Scheme 3). Additional confirmation of the regiochemistry of the carbonyl group came from the coupling constants of the C-2 methylene protons of **5**, where two signals at δ 2.30 (dd, J=7.7, 20.0 Hz, 1H) and δ 2.79 (dd, J=7.4, 20.0 Hz, 1H) were observed. However, the corresponding ketone of the other regioisomer **4** showed only one signal for the C-1 protons at δ 2.61 (d, J=3.7 Hz, 2H).

The ketone **5** was hydrogenated, then treated with pyridine/acetic anhydride to furnish the acetylated enone **6**. Deprotection of the acetate **6** with trifluoroacetic acid/H₂O afforded (–)-pentenomycin **1** (Scheme 3). The ¹H and ¹³C NMR of **6** and **1** were identical with those reported in the literature.^{1,2,6}

In summary, a concise and efficient synthesis of the (-)-pentenomycin 1 was demonstrated in five steps (46% yield), using our key polyhydroxy cyclopentene intermediate 2.

Acknowledgements

The authors wish to thank the Patterson foundation for their support and Dr. Kirk Manogue for his help in the preparation of this manuscript.

References

- (a) Smith III, A. B.; Boschelli, D. J. Org. Chem. 1983, 48, 1217. (b) Umino, K.; Furama, T.; Matzuzawa, N.; Awataguchi, Y.; Ito, Y.; Okuda, T. J. Antibiotic 1973, 26, 506. (c) Umino, K.; Takeda, N.; Ito, Y.; Okuda, T. Chem. Pharm. Bull. 1974, 22, 1233.
- 2. Bernillon, J.; Favre-Bonvin, J.; Pommier, M. T.; Arpin, N. J. Antibiot. 1989, 42, 1430.
- (a) Iura, Y.; Sugahara, T.; Ogasawara, K. Tetrahedron Lett. 1999, 40, 5735. (b) Pohmakotr, M.; Popuang, S. Tetrahedron Lett. 1991, 32, 275. (c) Hetmanski, M.; Purcell, N.; Stoodly, R. J.; Palfreyman, M. N. J. Chem. Soc., Perkin Trans. 1 1984, 2089.
- 4. (a) Seepersaud, M.; Bucala, R.; Al-Abed Y. Z. Naturforsch. 1999, 54b, 565. (b) Seepersaud, M.; Al-Abed, Y. Organic Lett. 1999, 1, 9, 1463.
- (a) Nicalaou, K. C.; Ueno, H.; Liu, J. J.; Nantermet, P. G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. J. Am. Chem. Soc. 1995, 117, 624. (b) Coleman, R. S.; Fraser, J. R. J. Org. Chem. 1993, 58, 385. (c) Rangaishenvi, M. V.; Singaram, B.; Brown, H. C. J. Org. Chem. 1991, 56, 3286. (d) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, 110, 6917.
- 6. For compound 1: ¹H NMR (D₂O, 270 MHz) δ 3.61 (ABq, $\Delta \delta = 0.07$ ppm, 2H, J = 11.6 Hz), 4.72 (dd, J = 1.2, 2.7 Hz, 1H), 6.34 (dd, J = 1.2, 6.2 Hz, 1H), 7.74 (dd, J = 2.7, 6.2 Hz, 1H) ¹³C NMR (D₂O, 67.5 MHz) δ 63.3, 71.7, 76.3, 133.5, 164.6, 209.8.